翻訳と辞書 |
Compression (functional analysis) : ウィキペディア英語版 | Compression (functional analysis) In functional analysis, the compression of a linear operator ''T'' on a Hilbert space to a subspace ''K'' is the operator :, where is the orthogonal projection onto ''K''. This is a natural way to obtain an operator on ''K'' from an operator on the whole Hilbert space. If ''K'' is an invariant subspace for ''T'', then the compression of ''T'' to ''K'' is the restricted operator ''K→K'' sending ''k'' to ''Tk''. More generally, for a linear operator ''T'' on a Hilbert space and an isometry ''V'' on a subspace of , define the compression of ''T'' to by :, where is the adjoint of ''V''. If ''T'' is a self-adjoint operator, then the compression is also self-adjoint. When ''V'' is replaced by the identity function , , and we acquire the special definition above. ==See also==
* Dilation
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Compression (functional analysis)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|